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Abstract

When a plurality of cooperating solutions are aggregated
into a single performance criterion, the set of the best
component solutions is not necessarily the best set of
component solutions [1], i.e. the best team does not
necessarily consist of the best players. The composite
effort of the system team, rather, is significantly more
important than a single player’s individual performance.
We consider the case wherein each player’s performance
is tuned to result in maximal team performance for the

specific case of maximal area coverage (MAC). The

approach is first illustrated through solution of MAC by a
fixed number of deformable shapes. An application to
sonar is then presented. Here, sonar control parameters
determine a range-depth area of coverage. The coverage
is also affected. by known but uncontrollable
environmental parameters. The problem is to determine
K sets of sonar ping parameters that result in MAC. The
forward problem of determining coverage given control
and environmental parameters is computationally

intensive. To facilitate real time cooperative optimization -

among a number of such systems, the sonar input-output
is captured in a feed-forward layered perceptron neural
network.
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1 Preliminaries
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A generic model for the team optimization of cooperating
systems (TOCS) is illustrated in Figure 1. A total of K
identical systems are replicated. The A™ system has
control input parameters listed in the vector ¢ and

corresponding output response a, . The outputs are

aggregated (e.g. combined). The aggregation is
interpreted by a fitness evaluation. The fitness function is
used to change {¢, |[1<k <K} in a manner that increases

and ultimately maximizes the fitness measure. We use
evolutionary computing for optimizing although any one
of numerous optimization algorithms can also be used [2].
Although numerous combinatorial optimization problems,
such as the packing problem and set-covering problem
[3], can be couched in the TOCS architecture of Figure 1,
we investigate its application only to MAC. Such
problems appear in many areas. Consider, for example,
the placement of cellular antennas each having area
coverage controlled by tunable parameters. When
locations are fixed, finding the antenna parameters to find
MAC is a TOCS problem. Alternately, for antenna
deployment, antenna locations can be included in the set
of adjustable parameters in the TOCS. In this paper, a
related problem of MAC from a sequence of sonar pings
is considered.

The architecture in Figure 1 has the property of
distributed modularity important when the component
systems require computational intensity. The procedure
also has the advantage of straightforward implementation
in object-oriented languages.
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Figure 1: Team optimization of cooperating systems (TOCS) for maximal area coverage (MAC). The K systems, in response to

stimuli generate respective area coverages of { a « }- These coverages are combined and a fitness function is evaluated. The fitness

provides input to the control which, in turn, generates changes in the control vectors, { C, }.

2 Area Coverage With Deformable Shapes

The MAC by TOCS

: procedure is

/ 2 K applicable to area
e Al coverage -with
deformable  shapes.

To illustrate, consider

the following

instructive  problem.

K rectangular shapes
of the type shown in
Figure 3 each have
fixed area, 4, but can
vary in accordance to
, aspect ratio
(parameterized by length ¢,), rotation angle 8, and central

of mass coordinates f; =[x,,,#,,1". As is illustrated in

Figure 4, the problem for a given shape is to situate K
rectangles in such as a manner as to maximally cover the
shape.

This problem is straightforwardly implemented using
the architecture in Figure 1. The k™ control vector is

Figure 3: Illustration of a
translatable, rotatable
rectangle with adaptive aspect
ratio
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The system outputs are
representations of the
areas . covered by the
rectangles. Aggregation is
the union of these areas.
The fitness value is the
total area corresponding to
the intersection of the
aggregation  with  the
target shape.

Examples of the evolution for MAC using TOCS is
shown in Figures 5 and 6 for the cases of three and six
rectangles, respectively, covering a circle. In both cases,
due to the circle’s symmetry, the number of solutions in
the continuous version of the problem is infinite. A
generic genetic algorithm was used in both cases for
optimization.

Figure 4: Coverage of an
irregular shape with K=five
rectangles of equal area.




Figure 5: Snapshots of the process of coverage of a
circle with k=3 equal area rectangles. The entire circle
cannot be covered.

3 Maximizing Sonar Area Coverage

A more interesting problem of MAC using TOCS is in
area coverage maximization by a plurality of sonar pings.
Consider a sonar target area defined as a planar region
under water of depth and range. The degree to which a
single sonar ping covers a desired target area is a function

depth, the output of each system in Figure 1 is the signal
excess (SE) corresponding to the imposed control
parameters. The SE is akin to a signal to noise ratio and
measures the ability to detect a target. When the SE
exceeds a prescribed threshold, coverage is assumed.
Otherwise, it is not. The individual outputs can be thus
characterized as binary maps — one for where coverage is
made and zero otherwise.

As in the case of the previous example, aggregation is
the union of the binary maps emerging from each of the
systems. The fitness of the control parameters is equal to
the total area covered by the K pings.

The forward problem for each of the K system
modules in Figure 1 is performed using Applied Physics
Laboratory acoustic simulation software (APLASS) [4].
The APLASS software is computationally intensive and
several minutes are required to analyze the forward
problem: the signal excess in range and depth as a
function of the input environmental and control
parameters. In order to speed the optimization, APLASS
data was used to train a layered perceptron4 [2]. The
result is that the perceptron, after proper training,
emulates the same results as APLASS — but much more
quickly. K identical neural networks trained to emulate
APLASS are then used in the architecture in Figure 1.

of both environment and sonar control parameters. Given The resulting optimal control parameters in
Figure 6: Snapshots of MAC using TOCS for
six boxes covering a circle. Time increases from
lefttoright. =

these parameters, computationally intensive emulations conjunction with environmental parameters will

evaluate acoustic beam trajectories to evaluate acoustic
signal strength at a plurality of depths and ranges.
Relevant environmental parameters include wind speed
and bottom type', bathymetry® and sound speed proﬁle3.
The positions of the submerged sonar transmitter and
receiver also affect the ensonification. These two depths,
in addition to the sonar ping parameters, constitute the
control parameters of the problem. The sonar parameters
can be controlled. The environmental parameters can’t.
The sonar problem under consideration is this. For a
given environment, we desire, with X pings of the sonar,
to observe as large an area in range and depth as possible.
This is equivalent to design of the K ping parameters,

{¢, |1<k <K}, in Figure 1. The systems in Figure 1

are the emulators that, for given environmental
conditions, compute coverage of the sonar. In range and

! both of which effects reflectivity

? the shape of the ocean’s floor

3 the changing speed of sound as a function of water
depth.
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maximize the combined coverage and individual coverage
maps and corresponding cumulative maps as is illustrated
in Figure 6. The outputs from each bank can be
characterized as binary maps — one for where coverage is
made and zero otherwise. As in the case of the previous
example, aggregation can be the union of the binary maps
emerging from each of the systems. The fitness of the
control parameters is equal to the total area covered by the
K pings. The neural networks denoted as 1 to K in Figure
6 are identical but placed in parallel to distinguish
different outcomes. The fitness function is determined by
appropriate aggregation procedure from the K output SE
maps (51 ,52 y vnes 51( ), which are acquired from a set of
K input vectors whose elements include a sonar control
parameter and fixed environmental parameters. The
aggregation procedure translates K output SE maps into a
value that corresponds to the sonar ping coverage to be
compared with desired coverage performance.

4 Details of the training of the neural network using
ALPASS data is given by Jensen et al. [3].



The MAC procedure consists of three steps of
operations. The maximum SE map, Bmax, is calculated

by taking maximum value in each element of K output SE
maps respectively.
X

Orax. ==max O
=l

where Oy ; is the /M element of £ output SE map, —ék,

and o__ .is the /* element of maximum SE map O -

max,j
This maximum SE map is fed into the nonlinear
squashing function. Hence, in lieu of a strict binary
representation, every element in the maximum SE map
lies between 0 and 1 based on the specific threshold value
implying whether the SE values are large enough to be
considered covered or not.® The ;™ element of the
maximum SE map, 0’ , IS denoted as

, 1

= -
Y 1+exp-a(o"“"/ )

where « is a sensitivity parameter of sigmoid slope, and 8
is a prespecified soft threshold value.® All elements in the
composite maps are summed to give a global coverage

N
A=Y O, -
j=1

Accordingly, the “fitness is calculated by normalizing the
resulting aggregation with the desired aggregation, 4 eired,
which is N.

Fitness =
desired

For example, assuming 4 sonar ping problem (K=4), a
single sonar control parameter, sonar depth, is
implemented by bit stream with required precision of
places after the decimal point. Thus, the required number
of bits for each depth is 17 (See Figure 7).

Several genetic algorithm emulations using different
probabilities are performed and their fitness functions
converged in all cases to the same values. The algorithm,
for this problem, was remarkably insensitive to
initialization and algorithm parameters. Convergence for
a number of cases is shown in Figure 8 as a function of
generation.

The resulting optimal sonar control -parameters in
conjunction with environmental parameter maximize the
combined global sonar ping coverage. Physical

* Such representation also allows use of gradient based
search techniques.

¢ Alternately, if strictly binary maps are desired, a hard
limiter can be used.
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limitations imposed by the fixed environment prohibits
100% of target surveillance area no matter how many
pings are used.

Figure 13 illustrates coverage maps of best 4 sonar
pings and their contributions (cumulative coverage) as
each sonar ping coverage map is added.

4 Generalizations

There exist numerous generalizations of the fundamental
architecture in Figure 1 that allow application to a larger
scope of problems.

e The systems need not be replications of each
other but can, for example, specialize in different
aspects of appeasing the fitness function.

e The search can be constrained [4]. In Figure 1,
for example, a constraint imposing module can
be inserted between the search box and the
inputs to ‘the systems. A simple example of
constraint imposition is requirement that each

element of each C, lie within specified operating
limits.
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¢ Figure 6: MAC by
TOCS as applied to sonar.
The vector of environmental

-

parameters, € , is fixed. For
the given environmental
parameters, the combination
of control vectors,

G, |1<k<K},

giving a combination
maximal area of
ensonification are desired.

The control vector contains
the parameters to be varied.
The overall fitness value is
equal to the area covered by
the ensonification. A generic
genetic algorithm is used to
perform the search over the K
vectors.

<= Figure 8: Fitness function
convergence using different
-probabilities of crossover and
mutation.
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Figure 19. Modular maximal area coverage using a neural network bank for the multiple sonar ping problem

(There are the best 4 different sonar pings that contribute to the maximal coverage after the convergence of the
GA) :
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